Baseando-se na demonstração do Teorema dos Três Primos de Helfgott em 2014, reconstrui explicitamente o sistema de constantes em relação à parte do arco menor (minor-arc), reorganizando as constantes explícitas dispersas em várias desigualdades numa estrutura de problema de supremo unidimensional.
Por meio dessa reescrita, toda a contribuição do arco menor é explicitamente expressa como uma função, cujo valor máximo determina a constante final. Além disso, ao aproveitar a monotonicidade do cauda e métodos de aritmética intervalar, é possível transformar etapas que originalmente dependiam de es
Ver original